NUP1301ML3T1G, SZNUP1301ML3T1G

Low Capacitance Diode Array for ESD Protection in a Single Data Line

NUP1301ML3T1G is a MicroIntegration device designed to provide protection for sensitive components from possible harmful electrical transients; for example, ESD (electrostatic discharge).

- Low Capacitance (0.9 pF Maximum)
- Single Package Integration Design
- Provides ESD Protection for JEDEC Standards JESD22

Machine Model = Class C Human Body Model = Class 3B

• Protection for IEC61000-4-2 (Level 4) 8.0 kV (Contact) 15 kV (Air)

- Ensures Data Line Speed and Integrity
- Fewer Components and Less Board Space
- Direct the Transient to Either Positive Side or to the Ground
- SZ Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- Pb-Free Package is Available

Applications

- T1/E1 Secondary IC Protection
- T3/E3 Secondary IC Protection
- HDSL, IDSL Secondary IC Protection
- Video Line Protection
- Microcontroller Input Protection
- Base Stations
- I²C Bus Protection

ON Semiconductor®

www.onsemi.com

CASE 318 STYLE 11

MARKING DIAGRAM

53 = Device Code

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
NUP1301ML3T1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel
SZNUP1301ML3T1G	SOT-23 (Pb-Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

1

NUP1301ML3T1G, SZNUP1301ML3T1G

MAXIMUM RATINGS (Each Diode) ($T_J = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	70	Vdc
Forward Current	I _F	215	mAdc
Peak Forward Surge Current	I _{FM(surge)}	500	mAdc
Repetitive Peak Reverse Voltage	V_{RRM}	70	V
Average Rectified Forward Current (Note 1) (averaged over any 20 ms period)	I _{F(AV)}	715	mA
Repetitive Peak Forward Current	I _{FRM}	450	mA
Non-Repetitive Peak Forward Current t = 1.0 μs t = 1.0 ms t = 1.0 S	I _{FSM}	2.0 1.0 0.5	A

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction-to-Ambient	$R_{ heta JA}$	625	°C/W
Lead Solder Temperature Maximum 10 Seconds Duration	TL	260	°C
Junction Temperature	TJ	-65 to 150	°C
Storage Temperature	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (Each Diode)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Reverse Breakdown Voltage (I _(BR) = 100 μA)	V _(BR)	70	_	_	Vdc
Reverse Voltage Leakage Current $(V_R = 70 \text{ Vdc})$ $(V_R = 25 \text{ Vdc}, T_J = 150^{\circ}\text{C})$ $(V_R = 70 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	I _R	- - -	- - -	2.5 30 50	μAdc
Diode Capacitance (between I/O and ground) (V _R = 0, f = 1.0 MHz)	C _D	_	_	0.9	pF
Forward Voltage (I _F = 1.0 mAdc) (I _F = 10 mAdc) (I _F = 50 mAdc) (I _F = 150 mAdc)	V _F	- - - -	- - - -	715 855 1000 1250	mV _{dc}

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

^{1.} FR-5 = $1.0 \times 0.75 \times 0.062$ in.

^{2.} FR-5 = $1.0 \times 0.75 \times 0.062$ in.

^{3.} Alumina = $0.4 \times 0.3 \times 0.024$ in, 99.5% alumina.

^{4.} Include SZ-prefix devices where applicable.

NUP1301ML3T1G, SZNUP1301ML3T1G

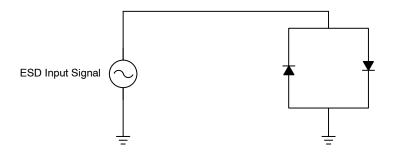


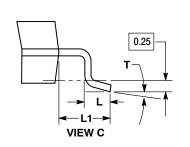
Figure 1. ESD Test Circuit

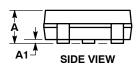
APPLICATION NOTE

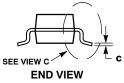
Electrostatic Discharge

A common means of protecting high–speed data lines is to employ low–capacitance diode arrays in a rail–to–rail configuration. Two devices per line are connected between two fixed voltage references such as V_{CC} and ground. When the transient voltage exceeds the forward voltage (V_F) drop of the diode plus the reference voltage, the diodes direct the

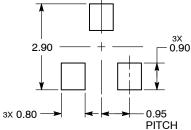
surge to the supply rail or ground. This method has several advantages including low loading capacitance, fast response time, and inherent bidirectionality (within the reference voltages). See Figure 1 for the test circuit used to verify the ESD rating for this device.




SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

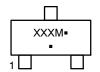

DATE 30 JAN 2018

SCALE 4:1 D - 3X b


TOP VIEW

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS


NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,

	PROT	RUSIONS, OR GATE BURRS.	
--	------	-------------------------	--

	MILLIMETERS				INCHES	
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0°		10°	0°		10°

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE
OT (1 F O			

SOT-23 (TO-236)

STYLE 9:	STYLE 10:	STYLE 11:	STYLE 12:	STYLE 13:	STYLE 14:
PIN 1. ANODE	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. CATHODE	PIN 1. SOURCE	PIN 1. CATHODE
ANODE	SOURCE	CATHODE	CATHODE	2. DRAIN	2. GATE
CATHODE	3. GATE	CATHODE-ANODE	ANODE	3. GATE	ANODE

STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:	STYLE 19:	STYLE 20:
PIN 1. GATE	PIN 1. ANODE	PIN 1. NO CONNECTION	PIN 1. NO CONNECTION	PIN 1. CATHODE	PIN 1. CATHODE
CATHODE	CATHODE	2. ANODE	CATHODE	2. ANODE	ANODE
ANODE	CATHODE	CATHODE	ANODE	CATHODE-ANOD	E 3. GATE

STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:	STYLE 25:	STYLE 26:
PIN 1. GATE	PIN 1. RETURN	PIN 1. ANODE	PIN 1. GATE	PIN 1. ANODE	PIN 1. CATHODE
SOURCE	OUTPUT	2. ANODE	2. DRAIN	2. CATHODE	2. ANODE
3 DRAIN	3 INPLIT	3 CATHODE	3. SOURCE	3. GATE	NO CONNECTION

STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE	
DOCUMENT N	UMBER: 98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DESCRIPTION:

PAGE 1 OF 1

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative