
Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
March 18, 2002

SL811HS Linux USB Host Control Driver
User’s Guide



2

SL811HS Linux USB HCD

1. Introduction .....................................................................................................................3
1.1 Scope ...................................................................................................................................................3
1.2 Overview .............................................................................................................................................3
1.3 Linux USB stack .................................................................................................................................3
1.4 SL811HS Linux Host Controller Driver..............................................................................................4

2. Definitions.........................................................................................................................6
3. System Development Environment................................................................................6

3.1 SL811HS .............................................................................................................................................6
3.2 Development target .............................................................................................................................6

3.2.1 Accelent IDP board ........................................................................................................................6
3.2.2 Linux kernel version 2.4.4 ..............................................................................................................6

3.3 Host computer with cross-development tools......................................................................................7
4. Setting up the SL811HS Development Environment ...................................................7
5. Example Hardware Connection .....................................................................................7
6. Installing the Linux Kernel Source Code ......................................................................8
7. Installing the GCC-ARM Cross-Development Toolchain ...........................................9
8. Physical-to-Virtual Memory Mapping ..........................................................................9
9. Interrupts .......................................................................................................................10
10. Building and Flashing the Linux Image ......................................................................10

10.1 Building the Image ............................................................................................................................10
10.2 Flashing the image.............................................................................................................................11

11. Working with USB Devices...........................................................................................11
11.1 USB Device File System...................................................................................................................11
11.2 USB Mass Storage Class ...................................................................................................................12
11.3 ADMtek Pegasus-based USB to Ethernet device ..............................................................................12
11.4 USB Keyboard ..................................................................................................................................13
11.5 USB Printer .......................................................................................................................................13

12. Tested Devices ................................................................................................................13
13. References.......................................................................................................................13

13.1 SL811HS Application Notes .............................................................................................................13
13.2 SL811HS/T USB Host/Slave Controllers Hardware Specification ...................................................13
13.3 Programming Guide for Linux USB Device Drivers. (http://usb.cs.tum.edu/usbdoc) ......................13
13.4 Acclent StrongARM IDP: Linux Software User’s Guide .................................................................13
13.5 Linux USB Guide (http://www.linux-usb.org) ..................................................................................14

14. Document Revision History ..........................................................................................15



3

1. INTRODUCTION

1.1 Scope

The primary objective of this document is to help developers to
understand the SL811HS Linux USB host controller driver. This
document covers the following topics:

� A general overview of the SL811HS board developed by
Cypress Semiconductor, the Linux USB stack, and the
SL811HS Linux HCD

� Description of the Linux kernel installation process
� Description of the software environment setup process
� Description of the process to set up USB test devices

1.2 Overview

The SL811HS USB Host embedded host controller is a single chip
USB embedded host solution that can communicate with either full-
speed or low-speed USB peripherals. The SL811HS can interface
to devices such as microprocessors, micro-controllers, DSPs or
directly to a variety of buses such as ISA, PCMCIA and others.
The SL811HS USB controller conforms to the low and full speed
requirements of USB Specification Revision 2.0.

Cypress Semiconductor has developed the SL811HS Linux host
driver. The host driver can be integrated into the Linux USB host
stack to provide a complete USB solution for the Linux
environment.

1.3 Linux USB stack

The Linux USB stack can be broken down into three main layers:
USB device driver, USB core, and the USB host controller driver
(HCD). The USB device driver establishes virtual connections,
configures, and communicates with the device(s). It assembles the
data into a USB request block (URB) and passes the request to the
USB core by a set of application programming interfaces (API).

The USB core is an intermediate layer between the device driver
and the HCD. The USB core handles the following:

� USB device enumeration and configuration
� Loading and unloading of the device driver as required
� Interfacing with the device driver via a set of APIs



4

� Interfacing with the HCD via a set of APIs

The Linux USB HCD is a hardware abstraction layer that hides the
hardware control implementation from the rest of the USB stack.
The HCD accepts USB requests from the Linux USB core, parses
the USB request and creates a USB transaction. The HCD
schedules the USB transaction and transmits it when the bandwidth
is available.

The Linux USB stack is shown in figure 1.

USB
Device Driver

USB
Device Driver

USB
Device Driver

USB Core

Host Controller Driver (HCD)

Host Driver API

Figure 1. Linux USB stack

1.4 SL811HS Linux Host Controller Driver

The SL811HS HCD complements the existing Linux USB stack by
providing supports for the SL811HS USB host controller. The
SL811HS Linux HCD can be broken down into the following major
functionalities:

� Support for a virtual root hub



5

� USB request queuing
� USB request scheduling
� Interrupt handling
� USB requests translating into USB transactions and packets
� USB packet transmitting and receiving

The HCD supports the interrupt, control, and bulk endpoints, but
the current version does not support isochrononus endpoints.

The HCD interfaces with the Linux USB core by a set of application
interfaces (API). The following table describes a subset of the API
functions.

Function Name Description

Usb_alloc_bus() This function creates the host controller
bus structure with specific driver
operations and initialize all internal
objects..

Usb_free_bus() This function deallocates an existing
host controller bus structure.

Usb_register_bus() This function uses the previously
allocated usb_bus structure and
registers the host controller driver to the
usb core.

Usb_deregister_bus() This function deregisters the usb_bus
structure.

Usb_new_device() This function connects a new USB
device to the USB core. It initializes the
USB device information and sets up the
topology.

usb_roothub_string() Obtain the root hub identifier.

usb_submit_urb() This is a function pointer that points to
the HCD submit function. It allows the
USB core to transmit data

Table 1. USB Core HCD API



6

2. DEFINITIONS

HCD Host Controller Driver

SL811HS The SL811HS is a Cypress USB 1.1 host controller

USB Universal Serial Bus

USB CORE A Linux USB stack

IDP The Integrated Development Platform built by Accelent
Corporation (http://www.accelent.com)

Linux Host A host computer that compiles the source code

Target The Integrated Development Platform.

URB USB Request Block, a data structure containing the USB
request.

3. SYSTEM DEVELOPMENT ENVIRONMENT

The system development environment is composed of

� SL811HS
� A target consisting of an Accelent IDP board and Linux

version 2.4.4
� Host computer and cross-compile tools

3.1 SL811HS

3.2 Development target

3.2.1 Accelent IDP board

The SL811HS HCD has been tested with the Intel SA1100/1110
processor on the Accelent IDP board. It can be ported to other
architectures supported by Linux.

3.2.2 Linux kernel version 2.4.4

The SL811HS HCD has been tested with the Linux kernel version
2.4.4 with kernel patches from Accelent. The host driver has not
been tested with other Linux kernels, but it can be modified to
accommodate other kernel releases, if necessary.



7

3.3 Host computer with cross-development tools

A host computer has cross-development tools to create a bootable
image for the target. This host machine can be any Linux machine
with GNU tools installed.

4. SETTING UP THE SL811HS DEVELOPMENT
ENVIRONMENT

The setup process involves the following:

1) Connect the SL811HS to the development platform
2) Install the Linux Kernel on the host computer
3) Install cross-development tools on the host computer
4) Define the memory map
5) Define the SL811HS hardware interrupt
6) Compile and download the kernel
7) Test the SL811HS HCD with USB devices

The following sections will describe each of the steps in detail.

5. EXAMPLE HARDWARE CONNECTION

The SL811HS connects to the Accelent IDP via the expansion bus.
The Accelent IDP utilizes the Intel StrongARM SA1110 processor.
The following is the wiring list for the IDP and SL811HS:

Expansion Bus (P16) IDP SIGNAL SL811HS SIGNAL
37 XB_A16 A0
57 /XB_OE NRD
59 /XB_WE NWR
71 /XB_CS7 NCS
10 GND GND
85 /RESET_OUT NRST
77 IRQ_XB INTRQ
12 GND GND
16 XB_D0 D0
18 XB_D1 D1
20 XB_D2 D2
22 XB_D3 D3
24 XB_D4 D4
26 XB_D5 D5
28 XB_D6 D6



8

30 XB_D7 D7
79 GND GND
6 +5V +5V

Table 2. IDP extension bus connection

In this development platform, the physical address register is
mapped to 0x4380000 and the data register is mapped to
0x43810000. Section 8 will describe the physical-to-virtual memory
address mapping in detail.

6. INSTALLING THE LINUX KERNEL SOURCE CODE

Accelent Corporation supplies the Linux kernel version 2.4.4 along
with three patches. These patches are modifications to the existing
2.4.4 kernel to support the SA1110 processor and the IDP board.
Cypress Semiconductor has supplied another patch file to support
the SL811HS host driver. This patch will install the SL811HS HCD
source code and add the SL811HS HCD into the configuration file.
The following files are included in the patch file:

Hc_simple.c A simple HCD front end that interacts with the
USB core and handles USB request blocks.

Hc_sl811.c A HCD that handles interrupts as well as the
transmission and reception of packets.

Hc_sl811_rh.c This file contains virtual root hub routines

Hc_simple.h header file

Hc_sl811.h header file

The following summarizes the steps to install the Linux kernel
source code.

1) Install the Linux kernel version 2.4.4
2) Apply patch 2.4.4-rmk3
3) Apply patch 2.4.4-rmk3-np1
4) Apply patch 2.4.4-rmk3-np1-asi1
5) Apply patch SL811HS
6) Copy rootfs.tar.gz to the kernel directory
7) Make sure bin2bin and mkfs.jffs2 are in the current directory



9

7. INSTALLING THE GCC-ARM CROSS-DEVELOPMENT
TOOLCHAIN

The Accelent SDK CD-ROM includes an ARM cross-development
toolchain to create a downloadable image for the target. Refer to
chapter 5 of the Accelent IDP User’s Guide for toolchain
installation.

8. PHYSICAL-TO-VIRTUAL MEMORY MAPPING

The Linux kernel accesses the SL811HS addresses via virtual
memory addressing. Therefore, all SL811HS physical memory
addresses must be mapped to the corresponding virtual memory
addresses. Table 3 contains the memory mapping information.

Physical
Address

Kernel Virtual
Address

Access to Address Register 0x43800000 0xD3800000
Access to Data Register 0x43810000 0xD3810000

Table 3. SL811HS Memory Mapping

The Linux kernel uses the accelent_io_desc[] data structure to
store the memory mapping information. This data structure is
located in the file $Linux/arch/mach_sa1100/accelent.c. This
information is board specific, and must be modified for different
boards. The following code excerpt maps the SL811HS physical
addresses to the Linux virtual address.

static struct map_desc accelent_io_desc[] __initdata = {
………
{0xd3800000, /* Virtual Base Address */
0x43800000, /* Physical Base Address */
0x00020000, /* Memory Region Size */
DOMAIN_IO, /* Domain */
1, /* Readable: 1 = readable, 0 = not readable */
1, /* Writeable: 1 = writeable, 0 = not writeable */
0, /* Cacheable: 1 = Cacheable, 0 = not cacheable */
0 /* Blockable: 1 = Blockable, 0 = not blockable */
},
……….
}



10

Note: The physical and virtual address has been customized for the
SL811HS connected to the Accelent IDP. The physical and virtual
address may be different for other development platforms.

9. INTERRUPTS

The SL811HS interrupt line is physically connected to the SA1110
general-purpose I/O line 13 and it can be configured as either an
interrupt line or an I/O line via the GPIO registers. During
initialization, the SL811HS HCD configures the GPIO 13 line as an
interrupt line that triggers on the rising edge of the signal. The
following code segment shows this configuration.

void init_irq(void)
{

GPDR &= ~(1<<13); // Set GPIO13 as an interrupt

/* Set GPIO13 irq to be a rise edge trigger */

set_GPIO_IRQ_edge (1<<13 , GPIO_RISING_EDGE);
}

Similar to the memory mapping, the interrupt line has been
customized for the SA1110 IDP. The interrupt setup method may
be different for other platforms.

10. BUILDING AND FLASHING THE LINUX IMAGE

10.1 Building the Image

From the kernel directory, type in the following commands to build a
kernel image:

make menuconfig
make dep
make zImage
make modules
make modules_install
make jffs_rootfs
make jffs_image



11

Three images are created with the build process and they are listed
below:

nk_jffs_flash.bin this image will flash the entire system
(kernel and rootfs)

nk_kernel.bin this image will be loaded to RAM and
the code will run from RAM.

nk_kernel_flash.bin this image will flash the kernel, but not
the rootfs.

10.2 Flashing the image

1) Rename the image file to nk.bin and place on an ATA flash card

2) Boot the Accelent IDP with the ATA flash card inserted

3) The image will be transferred to the RAM or flash depending on
the image

11. WORKING WITH USB DEVICES

11.1 USB Device File System

The USB device file system is a dynamically generated file system.
This file system is typically mounted in the /proc/bus/usb directory.
The files within this directory are useful as a debugging tool. To
make the USB device file system available, you must select the
following from the configuration menu

USB ->Preliminary USB Device File System

Once the kernel is compiled with the USB file system support, you
can mount the USB file system using the mount command as
follows:

mount –t usbdevfs none /proc/bus/usb

The output in the /proc/bus/usb directory should appear as follows:

dr-xr-xr-x 1 root root 0 Jan 1 00:00 001
-r--r--r-- 1 root root 0 Jan 2 00:38 devices
-r--r--r-- 1 root root 0 Jan 2 00:38 drivers



12

The “devices” file contains information about the currently
connected USB devices. It includes USB enumeration data such
as topology, device descriptor, current configuration, endpoint
descriptor, etc. This information is useful to check if the USB
device has been successfully enumerated.

The “drivers” file contains information about the currently installed
USB device drivers.

11.2 USB Mass Storage Class

The mass storage driver presents the USB device as a SCSI
device, therefore the SCSI support must be enabled. In the
configuration menu, you must select the following option:

SCSI Support->SCSI support
SCSI Support->SCSI generic support
USB->USB mass storage support

You may select the options to support for various type of mass
storage devices

SCSI Support->SCSI disk support (USB IDE drive)
SCSI Support->SCSI CD-ROM support
SCSI Support->SCSI Tape

Once the kernel is loaded, you can access the mass storage using
the following command:

mkdir /mnt/usbhd
mknod /dev/sda b 8 1
mount –t vfat /dev/sda /mnt/usbhd

11.3 ADMtek Pegasus-based USB to Ethernet device

To enable Pegasus-based devices, you must select the
configuration option “USB->USB ADMtek Pegasus-based Ethernet
devices support”

Once it is compiled into the kernel, the setup process is similar to
other Ethernet devices, i.e. you can use the “ifconfig” command to
configure the device. The following command assigns a static IP
address to the USB device.

ifconfig eth0 172.19.3.33



13

11.4 USB Keyboard

From the configuration menu, you should select the following
option:

Input Core->Input Core Support
Input Core->keyboard support
USB->USB human interface device (HID) support
Character Devices->PS/2 keyboard support

Unselect the following option from the configuration menu:

Character Device->ASI: Support for keyboard

11.5 USB Printer

You need to create a device node entry for the USB printer. Use
the following command:

mkdir /dev/usb
mknod /dev/usb/lp0 c 180 0

12. TESTED DEVICES

The following devices have been tested with the Accelent IDP
board:

Linksys Pegasus-based USB to Ethernet Adaptor
ISD315 USB mass storage device
USB keyboard
USB printer
USB hub

13. REFERENCES

13.1 SL811HS Application Notes

13.2 SL811HS/T USB Host/Slave Controllers Hardware Specification

13.3 Programming Guide for Linux USB Device Drivers.
(http://usb.cs.tum.edu/usbdoc)

13.4 Acclent StrongARM IDP: Linux Software User’s Guide



14

13.5 Linux USB Guide (http://www.linux-usb.org)



15

14. DOCUMENT REVISION HISTORY

Revision # Date Comments
1.0 3/22/2002 Initial Cypress revision


