

Document Title

256K x 16 Hight Speed SRAM with 3.3V

Revision History

Revision No	History	Draft Date	Remark
0A	Initial Draft	September 11,20	001

The attached datasheets are provided by ICSI. Integrated Circuit Solution Inc reserve the right to change the specifications and products. ICSI will answer to your questions about device. If you have any questions, please contact the ICSI offices.

256K x 16 HIGH SPEED ASYNCHRONOUS CMOS STATIC RAM WITH 3.3V SUPPLY

FEATURES

- High-speed access time: 8, 10, 12, and 15 ns
- CMOS low power operation
- TTL compatible interface levels
- Single $3.3V \pm 10\%$ power supply
- Fully static operation: no clock or refresh required
- Three state outputs
- Data control for upper and lower bytes
- Industrial temperature available

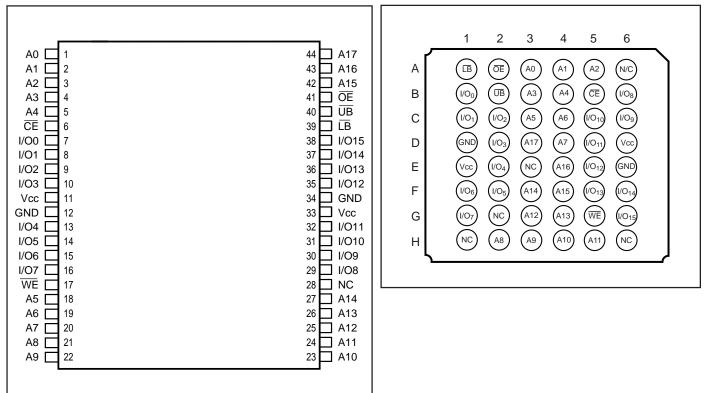
DESCRIPTION

The *ICSI* IC61LV25616 is a high-speed, 4,194,304-bit static RAM organized as 262,144 words by 16 bits. It is fabricated using *ICSI*'s high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields high-performance and low power consumption devices.

When \overline{CE} is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

Easy memory expansion is provided by using Chip Enable and Output Enable inputs, \overline{CE} and \overline{OE} . The active LOW Write Enable (\overline{WE}) controls both writing and reading of the memory. A data byte allows Upper Byte (UB) and Lower Byte (LB) access.

The IC61LV25616 is packaged in the JEDEC standard 44-pin 400mil SOJ, 44 pin 400mil TSOP-2 and 48-pin 6*8 TF-BGA.


256K x 16 DECODER A0-A17 MEMORY ARRAY VCC GND I/00-I/07 I/O Lower Byte COLUMN I/O DATA CIRCUIT I/08-I/015 Upper Byte CE ŌĒ CONTROL WF CIRCUIT ŪΒ LΒ ICSI reserves the right to make changes to its products at any time without notice in order to improve design and supply the best possible product. We assume no responsibility for any errors which may appear in this publication. © Copyright 2000, Integrated Circuit Solution Inc.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

44-Pin TSOP-2 and SOJ

48-Pin TF-BGA

PIN DESCRIPTIONS

A0-A17	Address Inputs	LB	Lower-byte Control (I/O0-I/O7)
I/O0-I/O15	Data Inputs/Outputs	UB	Upper-byte Control (I/O8-I/O15)
CE	Chip Enable Input	NC	No Connection
ŌĒ	Output Enable Input	Vcc	Power
WE	Write Enable Input	GND	Ground

TRUTH TABLE

					I/O PIN				
Mode	WE	CE	OE	LB	UB	I/00-I/07	I/O8-I/O15	Vcc Current	
Not Selected	Х	Н	Х	Х	Х	High-Z	High-Z	ISB1, ISB2	
Output Disabled	Н	L	Н	Х	Х	High-Z	High-Z	lcc	
	Х	L	Х	Н	Н	High-Z	High-Z		
Read	Н	L	L	L	Н	Dout	High-Z	lcc	
	Н	L	L	Н	L	High-Z	DOUT		
	Н	L	L	L	L	Dout	Dout		
Write	L	L	Х	L	Н	Din	High-Z	lcc	
	L	L	Х	Н	L	High-Z	DIN		
	L	L	Х	L	L	DIN	Din		

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter	Value	Unit
Vterm	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
TBIAS	Temperature Under Bias	-45 to +90	°C
Vcc	Vcc Related to GND	-0.3 to +4.0	V
Tstg	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W

Note:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	3.3V ± 10%
Industrial	–40°C to +85°C	3.3V ± 10%

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., Iон = -4.0 mA		2.4	—	V
Vol	Output LOW Voltage	Vcc = Min., Io∟ = 8.0 mA			0.4	V
Vih	Input HIGH Voltage			2.0	Vcc + 0.3	V
VIL	Input LOW Voltage ⁽¹⁾			-0.3	0.8	V
ILI	Input Leakage	$GND \leq Vin \leq Vcc$	Com. Ind.	-1 -5	1 5	μΑ
Ilo	Output Leakage	$GND \le VOUT \le VCC$ Outputs Disabled	Com. Ind.	-1 -5	1 5	μΑ

Notes:

1. VIL (min.) = -2.0V for pulse width less than 10 ns.

2. The Vcc operating range for 8 ns is 3.3V +10%, -5%.

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

				-8	ns	-10	ns	-12	ns ?	-15	ns	
Symbol	Parameter	TestConditions		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
kc	Vcc Dynamic Operating Supply Current	Vcc = Max., IOUT = 0 mA, f = fMAX	Com. Ind.	_	350 360	_	320 330	_	290 300	_	260 270	mA
ISB1	TTL Standby Current (TTL Inputs)	$\label{eq:Vcc} \begin{array}{l} Vcc = Max., \\ \hline V \mbox{V}\mbox{N} = V \mbox{H} \mbox{or} \mbox{V}\mbox{IL} \\ \hline \hline \hline C \mbox{E} \geq V \mbox{H} \mbox{$, f=0$} \end{array}$	Com. Ind.	_	55 65	_	55 65	_	55 65	_	55 65	mA
ISB2	CMOS Standby Current (CMOS Inputs)	$\label{eq:constraint} \begin{split} & \frac{Vcc = Max.,}{CE} \geq Vcc - 0.2V,\\ & V_{IN} \geq Vcc - 0.2V, \text{ or}\\ & V_{IN} \leq 0.2V, f = 0 \end{split}$	Com. Ind.	_	10 15	_	10 15	_	10 15	_	10 15	mA

Note:

1. At f = fMAX, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

IC61LV25616

CAPACITANCE⁽¹⁾

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 0V$	6	pF
Соит	Input/Output Capacitance	Vout = 0V	8	pF

Note:

1. Tested initially and after any design or process changes that may affect these parameters.

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

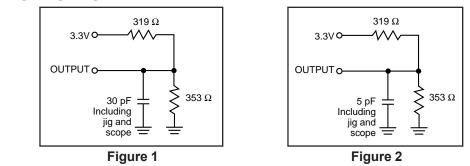
		-8	}	-1	0	-1	2	-1	5	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
trc	Read Cycle Time	8	—	10	_	12	_	15	—	ns
t AA	Address Access Time	_	8	_	10	_	12	_	15	ns
tона	Output Hold Time	3	_	3	_	3	_	3	_	ns
t ACE	CE Access Time	_	8	_	10	_	12	_	15	ns
t DOE	OE Access Time	_	4	_	5	_	6	_	7	ns
thzoe ⁽²⁾	OE to High-Z Output	0	4	_	5	_	6	0	6	ns
tlzoe ⁽²⁾	OE to Low-Z Output	0	_	0	_	0	_	0	_	ns
tHZCE ⁽²	CE to High-Z Output	0	4	0	5	0	6	0	6	ns
tLZCE ⁽²⁾	CE to Low-Z Output	3	_	3	_	3	_	3	_	ns
tва	LB, UB Access Time	_	4	_	5	_	6	_	7	ns
t HZB	$\overline{\text{LB}}$, $\overline{\text{UB}}$ to High-Z Output	0	4	0	5	0	6	0	6	ns
t LZB	LB, UB to Low-Z Output	0	_	0		0	_	0	_	ns

Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.

2. Tested with the load in Figure 1b. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.

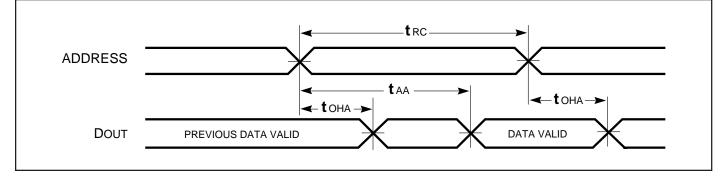
3. Not 100% tested.

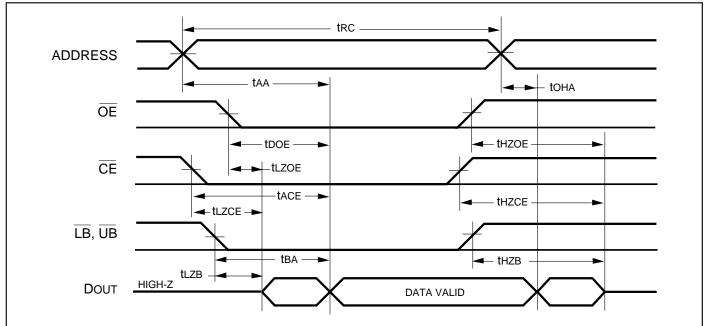

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

Notes:

1. The Vcc operating range for 8 ns is 3.3V +10%, -5%.


AC TEST LOADS


Integrated Circuit Solution Inc. AHSR022-0A 09/11/2001

READ CYCLE NO. 1^(1,2) (Address Controlled) ($\overline{CE} = \overline{OE} = V_{IL}$, \overline{UB} or $\overline{LB} = V_{IL}$)

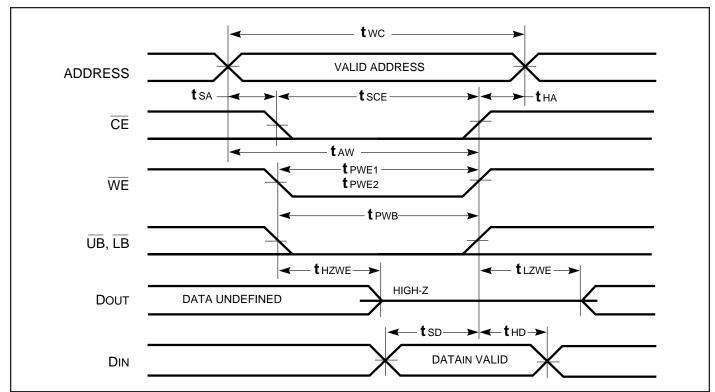
READ CYCLE NO. 2^(1,3)

- Notes: 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , \overline{CE} , \overline{UB} , or $\overline{LB} = V_{IL}$.
- 3. Address is valid prior to or coincident with \overline{CE} LOW transition.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,3) (Over Operating Range)

		-8	}	-1	0	-1	2	-1	5	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	8	_	10	_	12	_	15	_	ns
t SCE	CE to Write End	7	_	8	_	9	_	10	_	ns
taw	Address Setup Time to Write End	7	—	8	—	9	—	10	—	ns
tha	Address Hold from Write End	0	_	0	_	0	_	0	_	ns
t SA	Address Setup Time	0	_	0	_	0	_	0	_	ns
tрwв	$\overline{\text{LB}}$, $\overline{\text{UB}}$ Valid to End of Write	7	_	8	_	9	_	10	_	ns
t PWE	WE Pulse Width	7	_	8	_	9	_	10	_	ns
tsp	Data Setup to Write End	4.5	_	5	_	6	_	7	_	ns
t HD	Data Hold from Write End	0	_	0	_	0	_	0	_	ns
$t_{\text{HZWE}^{(2)}}$	WE LOW to High-Z Output	_	4	_	5	_	6	_	7	ns
$t_{\text{LZWE}^{(2)}}$	WE HIGH to Low-Z Output	3	_	3	_	3	_	3	_	ns

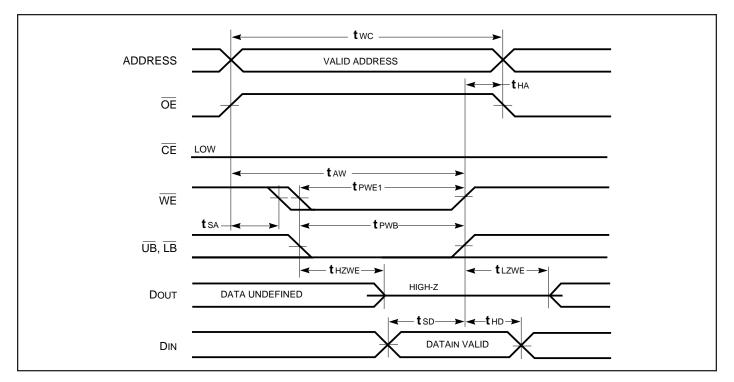
Notes:


1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.

2. Tested with the load in Figure 1b. Transition is measured $\pm 500 \text{ mV}$ from steady-state voltage. Not 100% tested.

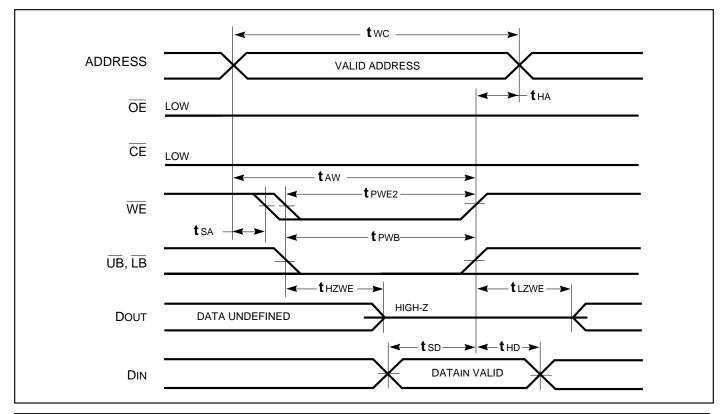
3. The internal write time is defined by the overlap of CE LOW and UB or LB, and WE LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.

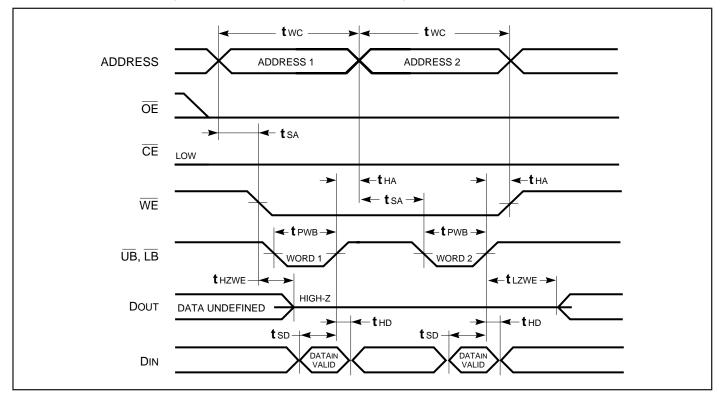
WRITE CYCLE NO. 1 (CE Controlled, OE is HIGH or LOW) (1)



Notes:

1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the CE and WE inputs and at least one of the LB and UB inputs being in the LOW state.


^{2.} WRITE = $(\overline{CE}) [(\overline{LB}) = (\overline{UB})] (\overline{WE}).$



WRITE CYCLE NO. 2 (WE Controlled. OE is HIGH During Write Cycle) ^(1,2)

WRITE CYCLE NO. 3 (WE Controlled. OE is LOW During Write Cycle) (1)

WRITE CYCLE NO. 4 (LB, UB Controlled, Back-to-Back Write) (1,3)

Notes:

- 1. The internal Write time is defined by the overlap of $\overline{CE} = LOW$, \overline{UB} and/or $\overline{LB} = LOW$, and $\overline{WE} = LOW$. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The **t**_{SA}, **t**_{HA}, **t**_{SD}, and **t**_{HD} timing is referenced to the rising or falling edge of the signal that terminates the Write.
- 2. Tested with \overrightarrow{OE} HIGH for a minimum of 4 ns before \overrightarrow{WE} = LOW to place the I/O in a HIGH-Z state.
- 3. WE may be held LOW across many address cycles and the LB, UB pins can be used to control the Write function.

ORDERING INFORMATION Commercial Range: 0°C to +70°C

ORDERING INFORMATION Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.	Package	Speed (ns)	Order Part No.	Package
8	IC61LV25616-8T	400mil TSOP-2	8	IC61LV25616-8TI	400mil TSOP-2
	IC61LV25616-8K	400mil SOJ		IC61LV25616-8KI	400mil SOJ
	IC61LV25616-8B	6*8mm TF-BGA		IC61LV25616-8BI	6*8mm TF-BGA
10	IC61LV25616-10T	400mil TSOP-2	10	IC61LV25616-10TI	400mil TSOP-2
	IC61LV25616-10K	400mil SOJ		IC61LV25616-10KI	400mil SOJ
	IC61LV25616-10B	6*8mm TF-BGA		IC61LV25616-10BI	6*8mm TF-BGA
12	IC61LV25616-12T	400mil TSOP-2	12	IC61LV25616-12TI	400mil TSOP-2
	IC61LV25616-12K	400mil SOJ		IC61LV25616-12KI	400mil SOJ
	IC61LV25616-12B	6*8mm TF-BGA		IC61LV25616-12BI	6*8mm TF-BGA
15	IC61LV25616-15T	400mil TSOP-2	15	IC61LV25616-15TI	400mil TSOP-2
	IC61LV25616-15K	400mil SOJ		IC61LV25616-15KI	400mil SOJ
	IC61LV25616-15B	6*8mm TF-BGA		IC61LV25616-15BI	6*8mm TF-BGA

Integrated Circuit Solution Inc.

HEADQUARTER: NO.2, TECHNOLOGY RD. V, SCIENCE-BASED INDUSTRIAL PARK, HSIN-CHU, TAIWAN, R.O.C. TEL: 886-3-5780333 Fax: 886-3-5783000

BRANCH OFFICE:

7F, NO. 106, SEC. 1, HSIN-TAI 5TH ROAD, HSICHIH TAIPEI COUNTY, TAIWAN, R.O.C. TEL: 886-2-26962140 FAX: 886-2-26962252 http://www.icsi.com.tw This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.